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Abstract
COVID-19 is the most rapidly expanding coronavirus outbreak in the past two decades. To provide a swift response to a
novel outbreak, prior knowledge from similar outbreaks is essential. Here, we study the volume of research conducted on
previous coronavirus outbreaks, speci�cally SARS and MERS, relative to other infectious diseases by analyzing over 35
million papers from the last 20 years. Our results demonstrate that previous coronavirus outbreaks have been understudied
compared to other viruses. We also show that the research volume of emerging infectious diseases is very high after an
outbreak and drops drastically upon the containment of the disease. This can yield inadequate research and limited
investment in gaining a full understanding of novel coronavirus management and prevention. Independent of the outcome
of the current COVID-19 outbreak, we believe that measures should be taken to encourage sustained research in the �eld.
Key words: Coronavirus, Emerging viruses, Epidemics, SARS

Introduction

Infectious diseases remain a major cause of morbidity and mor-
tality worldwide, in developed countries and particularly in the
developing world [1]. According to the World Health Organi-
zation, out of the top-10 causes of death globally, three are
infectious diseases [1]. In light of the continuous emergence
of infections, the burden of infectious diseases is expected to
become even greater in the near future [2, 3]. Many emerg-
ing pathogens are RNA viruses, and notable examples over the
last two decades include the SARS coronavirus in 2002-2003
in China, pandemic in�uenza (swine �u) A/H1N1 in 2009, the
MERS coronavirus in 2012 in the Middle East, and Ebola virus
disease in 2013-2014 in Africa.
Currently, the world is struggling with a novel strain of

coronavirus (SARS-CoV-2) that emerged in China during late
2019 and by the time of this writing has infected more than
4,400,000 people and killed more than 302,000 [4, 5]. COVID-
19 is the latest and third serious human coronavirus outbreak
in the past 20 years. Additionally, of course, there are several

more typical circulating seasonal human coronaviruses caus-
ing respiratory infections. It is still too early to predict the
epidemic course of COVID-19, but it is already a pandemic that
appears more di�cult to contain than its close relative SARS-
CoV [6, 7].
Much can be learned from past infectious disease outbreaks

to improve preparedness and response to future public health
threats. Three key questions arise in light of the COVID-19 out-
break: To what extent were the previous human coronaviruse (SARS
and MERS) outbreaks studied? Is research on emerging viruses be-
ing sustained, aiming to understand and prevent future epidemics?
Are there lessons from academic publications on previous emerging
viruses that could be applied to the current COVID-19 epidemic?

In this study, we answer these vital questions by utilizing
state-of-the-art data science tools to perform a large-scale
analysis of 35 million papers, of which 1,908,211 concern the
�eld of virology. We explore nearly two decades of infectious
disease research published from 2002 up to today. We particu-
larly focus on public health crises, such as SARS, in�uenza (in-
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cluding seasonal, pandemic H1N1, and avian in�uenza), MERS,
and Ebola virus disease, and compare them to HIV/AIDS and
viral hepatitis B and C, three bloodborne viruses that are as-
sociated with a signi�cant global health burden for more than
two decades.
A crucial aspect of being prepared for future epidemics is

sustained ongoing research of emerging infectious diseases
even at ‘times of peace’ when such viruses do not pose an ac-
tive threat. Our results demonstrate that research on previous
coronaviruses, such as SARS and MERS, was conducted by a rel-
atively small number of researchers centered in a small number
of countries, suggesting that such research could be better en-
couraged. We propose that regardless of the fate of COVID-19
in the near future, sustained research e�orts should be encour-
aged to be better prepared for the next outbreak.

Background

This research is a large-scale scientometric study in the �eld
of infectious diseases. We focus on the quantitative features
and characteristics of infectious disease research over the past
two decades. In this section, we present studies that analyze
and survey real-world trends in the �eld of infectious diseases
(see the Infectious Disease Trends subsection) and studies that
relate to bibliometric trends in general and public health in par-
ticular (see the Bibliometric Trends subsection).

Infectious Disease Trends

There is great promise in utilizing big data to study epidemi-
ology [8]. One approach is to gather data using di�erent
surveillance systems. For example, one such system is ProMED.
ProMED was launched 25 years ago as an email service to iden-
tify unusual worldwide health events related to emerging and
reemerging infectious diseases [9]. It is used daily around the
globe by public health policy makers, physicians, veterinarians,
and other healthcare workers, researchers, private companies,
journalists, and the general public. Reports are produced and
commentary is provided by a global team of subject-matter ex-
perts in a variety of �elds. ProMED has over 80,000 subscribers
and over 60,000 cumulative event reports from almost every
country in the world. Additionally, there are many di�erent
systems used by di�erent countries and health organizations
worldwide.
In 2006, Cowen et al. [10] evaluated the ProMED dataset

from the years 1996 to 2004. They discovered that there are dis-
eases that received more extensive coverage than others; “86
disease subjects had thread lengths of at least 10 reports, and
24 had 20 or more.” They note that the pattern of occurrence is
hard to explain even by an expert in epidemiology. Also, with
the level of granularity of ProMED data, it is very challenging
to predict the frequency that diseases are going to accrue. In
2008, Jones et al. [2] analyzed the global temporal and spatial
patterns of emerging infectious diseases (EIDs). They analyzed
305 EIDs between 1940 and 2004 and demonstrated that the
threat of EIDs to global health is increasing. The same year,
Freifeld et al. [11] developed HealthMap, an interactive surveil-
lance system that integrates disease outbreak reports from var-
ious sources.
Data about infectious diseases can also come fromweb- and

social-based sources. For instance, in 2009, Ginsberg et al.
[12] used Google search queries to monitor the spread of in-
�uenza epidemics. They used the fact that many people search
online before going to doctors, and they found that during a
pandemic, the volume of searches di�ers from normal. They
then created a mathematical model to forecast the spread of �u.

This research was later converted into a tool called Google Flu
Trends, and at its peak, Google Flu Trends was deployed in 29
countries worldwide. However, not everything worked well for
Google Flu Trends; in 2009, it underestimated the �u volume,
and in 2013, it predicted more than double the number of cases
than the true volume [13]. As a result of such discrepancies,
Google shut down the Google Flu Trends website in 2015 and
transferred its data to academic researchers [14]. Also in 2009,
Carneiro and Mylonakis [15] used large amounts of data to pre-
dict �u outbreaks a week earlier than prevention surveillance
systems.
In 2010, Lampos and Cristianini [16] extended the idea of

Carneiro and Mylonakis [15] to use temporal data to monitor
outbreaks. Instead of using Google Trends, they used Twit-
ter as their data source. They collected 160,000 tweets from
the UK, and as ground truth, they used HPA weekly reports
about the H1N1 epidemic. Using textual markers to measure
�u on Twitter, they demonstrated that Twitter can be used to
study disease outbreaks, similar to Google Trends. Also the
same year, Salathé and Khandelwal [17] analyzed Twitter and
demonstrated that it is possible to use social networks to study
not only the spread of infectious disease but also vaccinations.
They found a correlation between the sentiment in tweets to-
ward an in�uenza vaccine and the vaccination rate.
In 2014, Generous et al. [18] used Wikipedia to monitor

and forecast infectious disease outbreaks. They examined
Wikipedia access logs to forecast outbreak volumes for 14 com-
binations of diseases and locations. The model worked suc-
cessfully for only 8 out of the 14 cases. Also, the authors sug-
gested that it was even possible to transfer a model between
locations without retraining it. In contrast to most of the web-
based disease monitoring methods, Wikipedia-based monitor-
ing presents a fully open forecasting system that can be easily
reproducible. Generally, in the past couple of years, Wikipedia
has become a widely used data source for medical studies
[19, 20]. Moreover, a recent report [21] shows that Wikipedia
has successfully kept itself clean from the misinformation
spread during the COVID-19 outbreak. In 2015, Santillana et al.
[22] took the in�uenza surveillance one step further by fusing
multiple data sources. They used �ve datasets: Twitter, Google
Trends, near real-time hospital visit records, FluNearYou, and
Google Flu Trends. They used all these data sources with a
machine-learning algorithm to predict in�uenza outbreaks. In
2017, McGough et al. [23] dealt with the problem of signi�cant
delays in the publication of o�cial government reports about
Zika cases. To solve this problem, they used the combined data
of Google Trends, Twitter, and the HealthMap surveillance sys-
tem to predict estimates of Zika cases in Latin America.
In 2018, Breugelmans et al. [24] explored the e�ects of pub-

lishing in open access journals and collaboration between Eu-
ropean and sub-Saharan African researchers in the study of
poverty-related disease. To this end they used the PubMed
dataset but discovered it is not suited to performing full biblio-
metric analysis; to deal with this issue they also utilized Web
Of Science as a data source. They discovered that there is an
advantage for open access publications in terms of citations. In
2020, Head et al. [25] studied infectious disease funding. They
discovered that HIV/AIDS is the most funded disease. Addition-
ally, they discovered a pattern where Ebola, Zika, in�uenza,
and coronavirus funding were highest after an outbreak.
There is substantial controversy surrounding the use of

web-based data to predict the volume of outbreaks. The limita-
tions of Google Flu Trends, mentioned above, raised the ques-
tion of reliability of social data for assessing disease spread.
Lazer [26] noted that these types of methods are problematic
since companies like Google, Facebook, and Twitter are con-
stantly changing their products. Studies based on such data
sources may be valid today but not be valid tomorrow, and may
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even be unreproducible.

Bibliometric Trends

In 2005, Vergidis et al. [27] used PubMed and JCR (Journal Ci-
tation Reports) to study trends in microbiology publications.
They discovered that microbiology research in the US had the
highest average impact factor, but in terms of research pro-
duction, Western Europe was �rst. In 2008, Uthman [28] an-
alyzed trends in paper publications about HIV in Nigeria. He
found growth (from 1 to 33) of the number of publications about
HIV in Nigeria and that papers with international collabora-
tions were published in journals with a higher impact factor.
In 2009, Ramos et al. [29] used Web of Science to study publi-
cations about infectious diseases in European countries. They
found that more papers in total were published about infectious
diseases in Europe than in the US.
In 2012, Takahashi-Omoe and Omoe [30] surveyed publica-

tions of 100 journals about infectious diseases. They discov-
ered that the US and the UK had the highest number of publi-
cations, and relative to the country’s socioeconomic status, the
Netherlands, India, and China had relatively high productivity.
In 2014, similar to Wislar et al. [31], Kennedy et al. [32] stud-
ied ghost authorship in nursing journals instead of biomedical
journals. They found that there were 27.6% and 42% of ghost
and honorary authorships, respectively.
In 2015, Wiethoelter et al. [33] explored worldwide infec-

tious disease trends at the wildlife-livestock interface. They
found that 7 out of the top 10 most popular diseases were
zoonoses. In 2017, Dong et al. [34] studied the evolution of
scienti�c publications by analyzing 89 million papers from
the Microsoft Academic dataset. Similar to the increase found
by Aboukhalil [35], they also found a drastic increase in the
number of authors per paper. In 2019, Fire and Guestrin [36]
studied the over-optimization in academic publications. They
found that the number of publications has ceased to be a good
metric for academic success as a result of longer author lists,
shorter papers, and surging publication numbers. Citation-
based metrics, such as citation number and h-index, are like-
wise a�ected by the �ood of papers, self-citations, and lengthy
reference lists.

Data Description

In this study, we fused four data sources to extract insights
about research on emerging viruses. In the rest of this subsec-
tion we describe these data sources.
i. MAG - Microsoft Academic Graph is a dataset contain-
ing “scienti�c publication records, citation relationships be-
tween those publications, as well as authors, institutions,
journals, conferences, and �elds of study” [37]. The MAG
dataset we used was from 22 March 2019 and contains data
on over 210 million papers [38]. This dataset was used as the
main dataset of the study. Similar to Fire and Guestrin [36],
we only used papers that had at least 5 references in order to
�lter non peer-reviewed publications, such as news columns
which are published in journals.
ii. PubMed - PubMed is a dataset based on the PubMed
search engine of academic publications on the topics of
medicine, nursing, dentistry, veterinary medicine, health
care systems, and preclinical sciences [39]. One of the major
advantages of using the PubMed dataset is that it contains
only medical-related publications. The data on each PubMed
paper contains information about its venue, authors, and af-
�liations, but it does not contain citation data. In this study,

we used the 2018 annual baseline PubMed dataset containing
29,138,919 records.1 We mainly utilized the PubMed dataset
to analyze journal publications (see Paper Trends Section).
iii. SJR - Scienti�c Journal Rankings is a dataset containing
the information and ranking of over 34,100 journals from
1999 to 2018 [40], including their SJR indicator,2 the best
quartile of the journal,3 andmore. We utilized the SJR dataset
to compare the rankings of di�erent journals to assess the
level of their prestige.
iv. Wikidata - Wikidata is a dataset holding a vast knowl-
edge about the world, containing data on over 78,252,808
items [43]. Wikidata stores metadata about items, and each
item has an identi�er and can be associated with other items.
We utilized the Wikidata dataset to extract geographic infor-
mation for academic institutions in order to match a paper
with its authors’ geographic locations.

Analyses

Infectious Disease Analysis

To study the research of emerging viruses over time, we ana-
lyzed the datasets described in the Data Description section. In
pursuing this goal, we used the code framework recently pub-
lished by Fire and Guestrin [36], which enables the easy ex-
traction of the structured data of papers from the MAG dataset.
The MAG and PubMed datasets were �ltered according to a
prede�ned list of keywords. The keyword search was per-
formed in the following way: given a set of diseases D and
a set of papers P, from each paper title pt, where p ∈ P, we
created a set of word-grams. Word-grams are de�ned as n-
grams of words, i.e., all the combinations of a set of words in a
phrase, without disrupting the order of the words. For exam-
ple, the word-grams of the string “Information on Swine Flu,”
word-grams(Information on Swine Flu), will return the follow-
ing set: {Information, on, Swine, Flu, Information on, on Swine,
Swine Flu, Information on Swine, on Swine Flu, Information on Swine
Flu}. Next, for each p, we calculated word-gram(pt) ∩ D, whichwas considered as the diseases with which the paper was asso-
ciated.
In the current study, we focused on the past emerging coro-

naviruses (SARS and MERS). There are many other strains of
the human coronavirus, and four of them are known for caus-
ing seasonal respiratory infections [44]. We focused on SARS
and MERS since they are closer to SARS-CoV-2 and both have
zoonotic origins and raised international public health concern.
Additionally, we also analyzed Ebola virus disease, in�uenza
(seasonal, avian in�uenza, swine �u), HIV/AIDS, hepatitis B,
and hepatitis C as comparators that represent other important
emerging infectious diseases from the past two decades. For
these nine diseases, we collected all their aliases, which were
added to the set of diseases D and were used as keywords to �l-
ter the datasets. To reduce the false-positive rate, we analyzed
only papers that, according to the MAG dataset, were in the cat-
egories of medicine or biology, and following Fire and Guestrin
[36] had at least �ve references. Additionally, to explore the
trend in the core categories of infectious disease research, we
performed the same analysis on the virology category. In the
rest of this section, we describe the speci�c calculations and

1 ftp://ftp.ncbi.nlm.nih.gov/pubmed/baseline
2 The SJR indicator is a measure used to assess the prestige of a journal.
The measure takes into account the number of citations and the prestige
of the source of the citing paper [41]

3 “The Journal Impact Factor quartile is the quotient of a journal’s rank
in category (X) and the total number of journals in the category (Y), so
that (X / Y) = Percentile Rank Z” [42].

ftp://ftp.ncbi.nlm.nih.gov/pubmed/baseline
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analyses we performed.
Paper Trends
To explore the volume of studies on emerging viruses, we
examined the publication of papers about infectious diseases.
First, we de�ned several notions that we used to de�ne
publication and citation rates. Let D be a set of disease names
and P a set of papers. Namely, for a paper p ∈ P, pDisease isde�ned as the disease that matches the paper’s keywords,
pyear as the paper’s publication year, and pcitations as the set ofpapers citing p. Using these notions, we de�ned the following
features:

• Number of Citations - the total number of citations for a spe-
ci�c infectious disease.

• Number of Papers - the total number of published papers for
a speci�c infectious disease.

• Normalized Citation Rate (NCRy) - the ratio between the Num-
ber of Citations on a speci�c infectious disease d and the total
number of citations about medicine or biology in year y.4

NCRy(d) =
∑
{i∈P|pYear=y and iDisease=d}

∑
{j∈P} j ∈ icitations

|{j ∈ P|jYear = y}jcitations| (1)
• Normalized Paper Rate (NPR) - the ratio between the Number
of Papers published on a speci�c infectious disease d to the
total number of papers in the �elds of medicine or biology
in the year y.

NPRy(d) = |{i ∈ P|iYear = y and iDisease = d}||{i ∈ P|iYear = y}| (2)

Using these metrics, we inspected how the coronavirus pub-
lication and citation rates di�ered from other examined EIDs.
We analyzed how trends of citations and publications have
changed over time. Additionally, to inspect the similarities be-
tween the trends of di�erent diseases we calculated the DTW
(Dynamic time warping) distance [45] between all the dis-
ease pairs. Finally, we clustered the time-series using Time-
SeriesKMeans [46]
Journal Trends
To investigate the relationship between journals and their pub-
lication of papers about emerging viruses, we combined the
Semantic Scholar and PubMed datasets with the SJR dataset
using ISSN, and selected all the journals from SJR categories
related to infectious diseases (immunology, epidemiology, in-
fectious diseases, virology, and microbiology). First, we in-
spected whether coronavirus papers are published in the top
journals. We selected the top-10 journals by SJR and calculated
the number of papers they had published for each disease over
time. Next, we inspected how published papers about coron-
avirus are regarded relative to other EIDs in terms of ranking.
To this end, we de�ned a new metric, JScoret. JScoret is de�nedas the average SJR score of all published papers on a speci�c
topic t. We used JScoret to observe how the prominence of eachdisease in the publication world has changed over time. Lastly,
we explored publications by looking at the quartile ranking of
the journal over time.
Author Trends
To study how scienti�c authorship has changed in the �eld
of infectious diseases, we explored what characterizes the au-
thors of papers on di�erent diseases. We inspected the num-

4 To determine which papers, we used the MAG �elds of study.

ber of new authors over time to check how attractive emerg-
ing viruses are to new researchers. Additionally, we analyzed
the number of experienced authors, where author experience
is de�ned as the time that has passed from his or her �rst
publication. The authors were identi�ed by the identi�cation
number provided in the MAG dataset. Author disambiguation
is a challenging task; Microsoft combined multiple methods
to generate their author identi�cations [47]. We also analyzed
the number of authors who wrote multiple papers about each
disease.
Collaboration Trends
To inspect the state of international collaborations in emerging
virus research, wemapped academic institutions to geolocation.
However, it is not a trivial task to match institution names.
Institution names are sometimes written di�erently; for ex-
ample, Aalborg University Hospital and Aalborg University are
a�liated. However, there are cases where two similar names
refer to di�erent institutions; for example, the University of
Washington and Washington University are entirely di�erent
institutions. To deal with this problem, we used the a�liation
table in the MAG dataset. To determine the country and city of
each author, we applied a �ve-step process:
i. For each institution, we looked for the institution’s page
on Wikidata. From each Wikidata page, we extracted all
geography-related �elds.5
ii. To �rstmerge all theWikidata location �elds, we used the
“coordinate location” with reverse geocoding to determine
the city and country of the institution.
iii. For all the institutions that did not have a “coordinate
location” �eld, we extracted the location data from the other
available �elds. We crossed the data against city and country
lists from GeonamesCache Python library [48] to determine
whether the data in the �eld described a city or a country.
iv. To acquire country data for an institution that had only
city data on Wikidata, we used GeonamesCache city-to-
country mapping lists.
v. To get city and country data for institutions that did not
have the relevant �elds onWikidata, we extracted geographic
coordinates from Wikipedia.org.6 Even though Wikidata and
Wikipedia.org are both operated by the Wikimedia Founda-
tion, they are independent projects which have di�erent data.
Similar to Wikidata coordinates, we used reverse geocoding
to determine the city and country of the institution.

Using the extracted geodata, we explored how international col-
laborations change over time in coronavirus research. Finally,
we explored which countries have the highest number of pa-
pers about coronavirus and which countries have the highest
number of international collaborations over time.

Results

In the following subsections, we present all the results of the
experiments which were described in the Analyses section.

5 The �elds used were “coordinate location (P625),” “country (P17),” “lo-
cated at street address (P6375),” “located in the administrative ter-
ritorial entity (P131),” “headquarters location (P159),” and “location
(P276).”

6 English Wikipedia
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Papers.png

(a) Number of papers on medicine and
biology by di�erent datasets.

(b) MAG dataset normalized paper rate of selected infectious disease
studies over time.

Figure 1. The number of papers over time.

Results of Paper Trends

In recent years, there has been a surge in academic publi-
cations, yielding more than 1 million new papers related to
medicine and biology each year (see Figure 1a). In contrast
to the overall growth in the number of infectious disease pa-
pers, there has been a relative decline in the number of papers
about the coronaviruses SARS and MERS (see Figure 1b). Also,
we found that 0.4% of virology studies in our corpus from the
past 20 years involved human SARS and MERS, while HIV/AIDS
accounts for 7.9% of all virology studies. We observed that, un-
like the research in the domain of HIV/AIDS and avian in�uenza
that has been published at a high and steady pace over the last
20 years, SARS was studied at an overwhelming rate after the
2002-2004 outbreak and then sharply dropped after 2005 (Fig-
ure 2). In terms of Normalized Paper Rate (see Figure 2), after
the �rst SARS outbreak, there was a peak in publishing SARS-
related papers with NPR twice as high as Ebola’s. However,
the trend dropped very quickly, and a similar phenomenon can
be observed for the swine �u pandemic. The MERS outbreak
achieved a much lower NPR than SARS, speci�cally more than
16 times lower when comparing the peaks in SARS and MERS
trends. In terms of Normalized Citation Rate (Figure 3), we ob-
served the same phenomenon as we did with NPR. Observing
Figures 9 and 10, we can see that there are diseases with very
similar trends. More precisely, NPR and NCR trends are in two
clusters, where the �rst cluster contains avian in�uenza, Ebola,
MERS, SARS, and swine �u, and the second cluster contains
HIV/AIDS, hepatitis B, hepatitis C, and in�uenza.

Results of Journal Trends

From analyzing the trends in journal publications, we discov-
ered the numbers of papers published by journal quartile are
very similar to Normalized Paper Rate and Normalized Citation
Rate (see Figure 4). We observed that for most of the diseases,
the trends are quite similar: a growth in the study rate is cou-
pled with a growth in the number of published papers in Q1
journals. We discovered that for SARS, MERS, the swine �u,
and Ebola, Q1 publication trends were almost parallel to their
NPR trends (see Figures 2 and 4). Also, we noticed that HIV,
avian in�uenza, in�uenza, and hepatitis B and C have steady
publication numbers in Q1 journals. Looking at papers in highly
ranked journals (Figure 5), we observed that the diseases which
are being continuously published in top-10 ranked journals are
mainly persisting diseases, such as HIV and in�uenza. Addi-
tionally, we inspected how the average journal ranking of pub-
lications by disease has changed over time (Figure 6). We found
that only MERS had a decline of JScore. We also noticed that

Figure 2. Normalized paper rate by di�erent diseases over time. Diseases
that have a drastic increase in their normalized number of publications mostly
coincide with an epidemic.

current papers about SARS had the highest JScore.

Results of Author Trends

By studying the authorship trends in the research of emerging
viruses, we discovered that there is a di�erence in the average
experience of authors among diseases. SARS researchers had
the lowest experience in years, and hepatitis C had the most ex-
perienced researchers (see Table 1). We noticed that the SARS
research community had a smaller percentage of relatively pro-
li�c researchers than other diseases. Moreover, researchers
with multiple papers related to SARS and MERS published on
average 3.8 papers, while hepatitis C researchers published on
average 5.2 papers during the same period. Additionally, from
analyzing authors who published multiple papers on a speci�c
disease, we found that on average there was a 2.5 paper di�er-
ence between HIV and SARS authors. Furthermore, swine �u,
SARS, and MERS were the diseases on which authors published
the lowest number of multiple papers.
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Table 1. Median researcher experience in years by disease.
Disease Median Experience

in Years
SARS 4
Avian In�uenza 5
Swine Flu 5
Hepatitis B 5
Ebola 5
In�uenza 6
HIV/AIDS 7
MERS Coronavirus 7
Hepatitis C 8

Table 2. Average papers published by author with multiple pa-pers related to a speci�c disease.
Disease Papers
Swine Flu 3.45
SARS 3.84
MERS Coronavirus 3.86
Ebola 4.07
Hepatitis B 4.42
Avian In�uenza 4.47
In�uenza 5.04
Hepatitis C 5.24
HIV/AIDS 6.31

Figure 3. Normalized citation rate by di�erent diseases over time. Diseases
that have a drastic increase in their normalized number of citations mostly
represent an outbreak.

Figure 4. Publications by quartile over time for di�erent diseases. Unlike other
emerging infectious diseases, avian in�uenza did not demonstrate a decline in
Q1 publications.

Results of Collaboration Trends

By inspecting global collaboration and research e�orts, we
found that the geolocation of researchers correlated with pub-
lication trends. For instance, most SARS, MERS, hepatitis B,
and avian in�uenza research was done by investigators based

Figure 5. Number of papers by top-10 publications over time for di�erent
diseases.

Figure 6. JScore over time for di�erent diseases. Except for MERS, all presented
diseases show an increase in JScore.

in the US and China (Figure 7). In the case of SARS and MERS,
most of the research stemmed from China and the US (Figure
8) with only about 17% of SARS papers’ �rst authors being lo-
cated in Europe. Overall, researchers from 57 and 67 countries
have studied MERS and SARS, respectively. However, the vast



8 | GigaScience, 2017, Vol. 00, No. 0

Figure 7. Number of researchers in each country for each disease. Most of the
research was conducted in a small number of countries.

majority of SARS papers (73%) were written by researchers in
only 6 countries (Figure 7). While the US was dominant in the
research of all inspected diseases, China showed an increased
output in only these three diseases. Also, MERS and SARS were
studied in the least number of countries, and HIV was studied
in the highest number of countries (Figure 7). Moreover, SARS
and MERS were the diseases least studied in Europe, with only
17% and 19% of SARS and MERS studies, respectively, as op-
posed to Ebola studies, 29% of which were conducted in Eu-
rope.

Discussion

In this study, we analyzed trends in the research of emerging
viruses over the past two decades with emphasis on emerging
coronaviruses (SARS and MERS). We compared the research of
these two coronavirus epidemics to seven other emerging vi-
ral infectious diseases as comparators. To this end, we used
multiple bibliometric datasets, fusing them to get additional
insights. Using this data, we explored the research of epidemi-
ology from the perspectives of papers, journals, authors, and
international collaborations.
By analyzing the results presented in the Results section,

the following can be noted: First, the surge in infectious dis-
ease publications (Figure 1) supports the results of Fire and
Guestrin [36] that found there has been a general escalation of
scienti�c publications. We found that the growth in the num-
ber of infectious disease publications is very similar to other
�elds. Hence, Goodhart’s Law7 did not skip the world of vi-
rology research. However, alongside the general growth in the
number of papers, we observed that there was a decline in the
relative number of papers on the speci�c infectious diseases
we inspected. The most evident drastic drop in the publication
rate happened after an epidemic ended. It appears that, for
a short while, many researchers study an outbreak, but later
their e�orts are reduced. This is strengthened by considering
the average number of multiple papers per author for each dis-
ease (see Table 2). Additionally, similar patterns were found in
the funding of MERS and SARS research [25], which indicates
that there is a possibility that the research rate has decreased

7 “When a measure becomes a target, it ceases to be a good measure.”

due to lack of funding.
Second, when looking at journal publications, we noted very

similar patterns occurred for citations and publications. This
result emphasizes that fewer publications, and hence fewer ci-
tations, translate into fewer papers in Q1 journals (Figure 4).
Also, we observed the same patterns as Fire and Guestrin [36],
with most of the papers being published in Q1 journals and the
minority published in Q2-Q4 journals. This trend started to
change when zooming in and analyzing publications in top-10
ranked journals (Figure 5). While we can see some correla-
tion to outbreaks in Ebola, swine �u, and SARS, it is harder
to interpret the curve of HIV since there were no focused epi-
demics in the past 20 years but a global burden, and we did not
observe similar patterns in publications and citations. Observ-
ing the JScore (Journal Trends Section) results (Figure 6), most
diseases showed a steady increase, but two diseases behaved
rather anomalously. MERS had a decline since 2013, which is
reasonable to expect after the initial outbreak, but we did not
see the same trend in the other diseases and there is a general
trend of increasing average SJR [36]. The second anomaly is
that SARS had an increase in JScore alongside a decrease in cita-
tions and publication numbers. Inspecting the data, we discov-
ered that in 2017 there were three published papers in Lancet
Infectious Diseases and in 2015 two papers in Journal of Exper-
imental Medicine about SARS, and both journals have a very
high SJR. These publications increased the JScore drastically.
This anomaly is a result of outliers in the data that biased the
results. We can observe in Figure 4 that in the last decade the
number of SARS papers published in ranked journals dropped
drastically. It dropped low enough that two outliers created a
bias on the JScore. Generally, the less data we have, the greater
chance for outliers to cause bias in the data.
Third, we observed that on average authors write a fewer

number ofmultiple papers on diseases that are characterized by
large epidemics, such as the swine �u and SARS. On the other
side of the scale are hepatitis C and HIV, which are persistent
viral diseases with high global burdens. These diseases involve
more proli�c authors. Regarding Ebola andMERS, it is too early
to predict if they will behave similarly to SARS since they are
relatively new and require further follow up.
Fourth, looking at international collaboration, we observed

the US to be very dominant in all the disease studies (Figure
7). Looking at China, we found it to be mainly dominant in
diseases that were epidemiologically relevant to public health
in China, such as SARS, avian in�uenza, and hepatitis B. When
looking at Ebola, which has not been a threat to China for the
last two decades, we observed a relatively low investment in
its research in China. We observed that regarding MERS, we
found similar results to Sa’ed [49]. In both studies the top-3
biggest contributors in MERS studies were the US, China, and
Saudi Arabia.
Many of the trends we observed are related to the pattern

of the diseases. We observed two main types of infectious dis-
eases with distinct trends. The �rst type was emerging viral
infections like SARS and Ebola. Their academic outputs tend
to peak after an epidemic and then subside. The second type
were viral infections with high burdens such hepatitis B and
HIV, for which there is a more or less constant trend. These
trends were most evident in publication and citation numbers,
as well as journal metrics. The collaboration and author distri-
butions were more a�ected by where the outbreak occurred or
where there was a high burden. This was also strengthened
in the clusters we found where they were divided in the same
way.
In terms of practical implications, we see several options.

First, notwithstanding the importance of pathogen discovery,
as evident in projects like the Global Virome Project [50] that
is trying to discover unknown zoonotic viruses to stop future
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(a) Coronavirus paper publication by country. (b) Social network of top coronavirus collaborations.
Figure 8. International research on the coronavirus.

outbreaks, it is still important to monitor the status of current
research that concerns known pathogens. It can be observed
from Figures 2 and 3 that there are diseases with declining in-
terest from the scienti�c community. These trends are harder
to spot when looking at the total number of publications since
the total number of papers generally keeps growing (Figure
1a). Using NPR and NCR can help decision makers investigate
if additional resources should be invested in the study of these
diseases. For instance, while SARS and MERS were in WHO’s
R&D Blueprint as priority diseases, they still exhibited a de-
cline in their research rate. Second, using collaboration data, it
is possible to �nd which countries have potential for growth in
the number of researchers on speci�c diseases and also which
bilateral grants have potential.
Currently, there is no doubt that we have to be better pre-

pared for the next pandemic and the emergence of “Disease
X.” We observed that currently there is a non-sustained in-
vestment in EIDs such as SARS and MERS, which is a key issue.
Another crucial issue is the sharing of research material such
as data and code. Data and code allow scientists to make more
accurate discoveries faster by continuing knowledge from pre-
vious studies. Using the MAG dataset Paper Resources table,
we inspected how many papers from the nine diseases we an-
alyzed had code or data. We found that there were 30 and 75
papers that had data and code, respectively. These numbers are
very low, and we suspect that there are a lot of missing data
in this table. We �rmly believe that publishing code and data
should be mandatory when possible.
This study may have several limitations. To analyze the

data, we relied on titles to associate papers with diseases. While
a title is very important in classifying the topic of a paper, some
papers may discuss a disease without mentioning its name in
the title. Additionally, there may be false positives; for in-
stance, an acronym might have several meanings that are not
related to an infectious disease term. An additional limitation
is our focus on a limited number of distinct diseases. There are
other emerging infections not evaluated here in which could
have followed other trends. To deal with some of these lim-
itations, we only analyzed papers that were categorized as
medicine and biology papers as a means to reduce false pos-
itives. Furthermore, we show that the same trends appeared
even when we �ltered all the papers by the category of virol-
ogy (see Figures 11 and 12). Finally, we compared papers that
were tagged with a MeSH term on PubMed to the papers we
retrieved using our keyword search of the title. We found that
we matched MeSH terms with 73% recall, which is in the range
described by Breugelmans et al. [24].
In the future, we would like to perform extended collabo-

ration analysis by improving the institution country mapping.
Currently, we were able to identify 94.2% of the countries of
origin for the institutions in the MAG a�liation table. We in-
tend to improve the institution country mapping by using addi-

tional data sources. Additionally, we are planning to extend our
study into other diseases and look for correlations with real-
world data such as global disease burden.

Conclusions

The COVID-19 outbreak has emphasized the insu�cient knowl-
edge available on emerging coronaviruses. Here, we explored
how previous coronavirus outbreaks and other emerging viral
epidemics have been studied over the last two decades. From
inspecting the research outputs in this �eld from several dif-
ferent angles, we demonstrate that the interest of the research
community in an emerging infection is temporarily associated
with the dynamics of the incident and that a drastic drop of
interest is evident after the initial epidemic subsides. This
translates into limited collaborations and a non-sustained in-
vestment in research on coronaviruses. Such a short-lived in-
vestment also involves reduced funding as presented by Head
et al. [25] and may slow down important developments such as
new drugs, vaccines, or preventive strategies. There has been
an unprecedented explosion of publications on COVID-19 since
January 2020 and also a signi�cant allocation of research fund-
ing. We believe the lessons learned from the scientometrics
of previous epidemics argue that regardless of the outcome of
COVID-19, e�orts to sustain research in this �eld should be
made. More speci�cally, in 2017 [51] and 2018 [52], SARS and
MERS were considered to be priority diseases in WHO’s R&D
Blueprint, but their research rate did not grow relative to other
diseases. Therefore, the translation of international policy and
public health priorities into a research agenda should be con-
tinuously monitored and enhanced.
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Figure 9. DTW distance between NPR of diseases

Figure 10. DTW distance between NCR of diseases.

Figure 11. Normalized paper rate of the virology category by di�erent diseases
over time.

Figure 12. Normalized citation rate of the virology category by di�erent dis-
eases over time.
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We thank the reviewer for the constructive comments. We really appreciate the reviewer’s 
inspection of the code and trial run. We have addressed the reviewer’s concerns and have 
improved the paper accordingly. We improved the READMEs to make the code usage easier. 
We also improved the code and explanation according to the reviewer’s recommendations, 
and uploaded it to GigaDB. 
 
Comment 1:  
When I asked whether two significant digits are appropriate here, I was suspecting one would 
be most appropriate, two might perhaps be acceptable, but the authors’ decision to go for five 
now does not make sense to me. 
 
Response 1:  
Thank you for clarifying, we changed it to one significant digit. 
 
Comment 2:  
I think SVG would be preferable over PNG and also address Reviewer 1’s comment about 
the legibility of the figures better. However, I suspect OUP’s publishing workflows cannot 
handle SVG properly. 
  
Response 2:  
We agree that SVG as a format has many advantages, originally, we tried adding the figure as 
SVG to the paper but the text inside the figures was not displayed correctly after the latex 
compilation. CTAN documentation recommends converting SVG to PDF using Inkscape but 
then it would not be web compatible. 
In the current submission, we also added all the figures as an SVG, in case OUP would like 
to use them.  
 
Comment 3:  
If you say that you “believe the sharing of code and data is very important for driving science 
forward”, then I have a hard time understanding why you shared the code and data the way 
you did, which made it very hard to review or to contribute improvements (see below). 
 
Response 3:  
We are working already for about two months on uploading the data to the Journal FTP. We 
had many problems with the data uploading to the journal FTP, disconnections, slow upload 
speeds (about 20 kb/s) corrupted files, etc. Currently, the upload speed is better than before 
but only at night. We already finished uploading everything without corruptions (md5 
validation was performed). In the previous submission, we tried to solve these problems by 
uploading the data to google drive where we have unlimited storage, fast upload speeds, and 
also there is a CLI tool that can be used to upload the data directly from the server. We hoped 
that this will make the data more accessible but turned out this did not work as well as we 
planned. We hope this is rectified in future submissions. 
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Comment 4:  
To begin with, why am I just presented with three large files and no guidance? Wouldn’t it 
make sense to place a README such that it is the first thing a potential user would see and 
interact with? 
 
Response 4:  
We have improved the READMEs fixed the typos and added additional documentation about 
the datasets. 
 
 
Comment 5:  
Without guidance, it was hard to decide which files to examine and how, so I focused on the 
Jupyter notebooks and Python scripts that I could find. The notebooks have apparently not 
been prepared for sharing (which would involve deleting all outputs, running all cells again 
and comparing that to the results obtained earlier). 
 
Response 5:  
As suggested we cleared the outputs of all the notebooks. 
 
Comment 6: 
The notebooks directly in ScienceDynamics-dev/examples were quite interesting in 
themselves as a foundation for the work reported in the manuscript, but not directly relevant 
to it since they seem to have been the last run well before COVID-19 made the news. This 
creates additional complications, e.g. ScienceDynamics-dev/examples/Part I Creating 
Datasets.ipynb links to https://kddcup2016.azurewebsites.net/Data, which is now a dead link, 
albeit its former contents and the link chain from it can be in part recovered from the Internet 
Archive. From a reviewer’s perspective, it would have been more useful to use something 
like  
https://doi.org/10.5281/zenodo.2628216 (that is already public and easily accessible and 
permanently archived with a persistent identifier) as the basis for the computations, especially 
since that is already cited in the manuscript (as ref. 38 in the revision). However, I understand 
that this resource was not available when the manuscript was first submitted 
 
Response 6: 
The MAG version used in the paper is from https://doi.org/10.5281/zenodo.2628216. Some 
of the notebooks in the git related to the original study for which the library was developed, 
that paper used the https://kddcup2016.azurewebsites.net/Data. We changed the folder 
structure and added a about the folder structure in the README. 
 
Comment 7:  
ScienceDynamics-dev/requirements.txt lists multiple dependencies twice 
 
Response 7: 
Thank you for bringing this to our attention, we updated the requirements.txt accordingly 
 
 
Comment 8:  
The pubmed.json generated by pubmed_2_json.py as per ScienceDynamics-
dev/examples/Coronavirus/README.md was empty 
 



Response 8: 
We updated the README and rewritten pubmed_2_json.py to work as a CLI tool. 
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Dear Editor, 

Please find attached the manuscript “Scientometric Trends for Coronaviruses and Other 

Emerging Viral Infections” coauthored by Dima Kagan, Jacob Moran-Gilad, and Michael Fire 

to be considered for possible publication in GigScience. 

This work presents a multidisciplinary study that combines data science, scientometric, and 

virology to investigate the volume of study of previous coronavirus outbreaks (SARS and 

MERS) relative to other emerging infectious diseases. In particular, we analyzed the research 

of nine emerging viral infectious diseases from the past two decades. To this end, we fused 

multiple large-scale bibliometric datasets. 

Our findings confirm that previous coronavirus outbreaks have been understudied.  The 

coronavirus was considerably less studied in compare to blood borne viruses. Additionally, 

its research community has less prolific researchers than the other inspected diseases.  

Moreover, 73% of the coronavirus was centered in only 6 countries and in total it was 

studied in the lowest number of distinct countries from the inspected diseases. 

We believe that this manuscript is appropriate for publication by the GigaScience journal 

because it sheds new light on the understudy of emerging infectious disease, specifically the 

coronavirus. Our manuscript encourages future studies of infectious diseases to explore 

understudied diseases to be better prepared for future outbreaks. 

This manuscript has not been published and is not under consideration for publication 

elsewhere only a preprint available at bioRxiv. We have no conflicts of interest to disclose 

and all authors have checked the manuscript and have agreed to the submission. 

Thank you for your consideration. 

Sincerely, 

Dima Kagan, Jaccob Moran-Gilad, and Michael Fire 
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